RAG from the Ground Up with Python and Ollama
Retrieval Augmented Generation (RAG) is the de facto technique for giving LLMs the ability to interact with any document or dataset, regardless of its size. Follow along as I cover how to parse and manipulate documents, explore how embeddings are used to describe abstract concepts, implement a simple yet powerful way to surface the most relevant parts of a document to a given query, and ultimately build a script that you can use to have a locally-hosted LLM engage your own documents.